40 lines
1.5 KiB
Python
40 lines
1.5 KiB
Python
import os
|
|
from . import res
|
|
|
|
def start_workflow():
|
|
res.bootstrap_folder_structure()
|
|
|
|
aggregated_metrics = {}
|
|
output_file = os.path.join(
|
|
res.get_path_results_aggregations(),
|
|
res.get_filename_results_aggregations_hevc()
|
|
)
|
|
|
|
for f in res.get_all_encoded_files_hevc():
|
|
filename = os.path.splitext(os.path.basename(f))[0]
|
|
sampleNumber = res.get_sample_number_from_filename(filename)
|
|
preset = res.get_preset_from_encode_filename(filename)
|
|
crf = res.get_crf_from_encode_filename(filename)
|
|
|
|
if not preset in aggregated_metrics.keys():
|
|
aggregated_metrics[preset] = {}
|
|
if not crf in aggregated_metrics[preset].keys():
|
|
aggregated_metrics[preset][crf] = {}
|
|
if not "samples" in aggregated_metrics[preset][crf].keys():
|
|
aggregated_metrics[preset][crf]["samples"] = {}
|
|
|
|
aggregated_metrics[preset][crf]["samples"][sampleNumber] = {
|
|
"encoding_time": res.get_encoding_time_hevc(filename),
|
|
"filesize_percentage": res.get_filesize_percentage(f),
|
|
"vmaf_score": res.get_vmaf_score_of_encode(filename)
|
|
}
|
|
|
|
for preset in aggregated_metrics.keys():
|
|
for crf in aggregated_metrics[preset].keys():
|
|
aggregated_metrics[preset][crf] = res.aggregated_metrics(
|
|
aggregated_metrics[preset][crf]
|
|
)
|
|
|
|
res.write_dict_to_json_file(output_file, aggregated_metrics)
|
|
|
|
|